1. Cover
  2. Half-Title Page
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. About the Author
  9. 1 Introduction: Toolbox at the Physical–Life Science Interface
    1. 1.1 Motivation for Biophysics
    2. 1.2 What Do We Mean by a “Toolbox?”
    3. 1.3 Makeup of the Subsequent Chapters in This Book
      1. 1.3.1 Detection, Sensing, and Imaging Techniques
      2. 1.3.2 Experimental Biophysical Methods Primarily Relating Especially to Force
      3. 1.3.3 Complementary Experimental Technologies
      4. 1.3.4 Theoretical Biophysics Tools
    4. 1.4 Once More, Unto the Breach
    5. 1.5 Summary Points
    6. Questions
    7. References
  10. 2 Orientation for the Bio-Curious: The Basics of Biology for the Physical Scientist
    1. 2.1 Introduction: The Material Stuff of Life
    2. 2.2 Architecture of Organisms, Tissues, and Cells and the Bits Between
      1. 2.2.1 Cells and Their Extracellular Surroundings
      2. 2.2.2 Cells Should Be Treated Only as a “Test Tube of Life” with Caution
      3. 2.2.3 Cells Categorized by the Presence of Nuclei (or Not)
      4. 2.2.4 Cellular Structures
      5. 2.2.5 Cell Membranes and Walls
      6. 2.2.6 Liquid–Liquid Phase-Separated (LLPS) Biomolecular Condensates
      7. 2.2.7 Viruses
    3. 2.3 Chemicals that Make Cells Work
      1. 2.3.1 Importance of Carbon
      2. 2.3.2 Lipids and Fatty Acids
      3. 2.3.3 Amino Acids, Peptides, and Proteins
      4. 2.3.4 Sugars
      5. 2.3.5 Nucleic Acids
      6. 2.3.6 Water and Ions
      7. 2.3.7 Small Organic Molecules of Miscellaneous Function
    4. 2.4 Cell Processes
      1. 2.4.1 Central Dogma of Molecular Biology
      2. 2.4.2 Detection of Signals
      3. 2.4.3 Trapping “Negative” Entropy
      4. 2.4.4 Natural Selection, Neo-Darwinism, and Evolution
      5. 2.4.5 “Omics” Revolution
    5. 2.5 Physical Quantities in Biology
      1. 2.5.1 Force
      2. 2.5.2 Length, Area, and Volume
      3. 2.5.3 Energy and Temperature
      4. 2.5.4 Time
      5. 2.5.5 Concentration and Mass
      6. 2.5.6 Mobility
    6. 2.6 Summary Points
    7. Questions
    8. References
  11. 3 Making Light Work in Biology: Basic, Foundational Detection and Imaging Techniques Involving Ultraviolet, Visible, and Infrared Electromagnetic Radiation Interactions with Biological Matter
    1. 3.1 Introduction
    2. 3.2 Basic UV-VIS-IR Absorption, Emission, and Elastic Light Scattering Methods
      1. 3.2.1 Spectrophotometry
      2. 3.2.2 Fluorimetry
      3. 3.2.3 Flow Cytometry and Fluorescence-Assisted Cell Sorting
      4. 3.2.4 Polarization Spectroscopy
      5. 3.2.5 Optical Interferometry
      6. 3.2.6 Photothermal Spectroscopy
    3. 3.3 Light Microscopy: The Basics
      1. 3.3.1 Magnification
      2. 3.3.2 Depth of Field
      3. 3.3.3 Light Capture from the Sample
      4. 3.3.4 Photon Detection at the Image Plane
    4. 3.4 Nonfluorescence Microscopy
      1. 3.4.1 Bright-Field and Dark-Field Microscopy
      2. 3.4.2 Contrast Enhancement Using Optical Interference
      3. 3.4.3 Digital Holographic Microscopy
    5. 3.5 Fluorescence Microscopy: The Basics
      1. 3.5.1 Excitation Sources
      2. 3.5.2 Fluorescence Emission
      3. 3.5.3 Multicolor Fluorescence Microscopy
      4. 3.5.4 Photobleaching of Fluorophores
      5. 3.5.5 Organic Dye Fluorophores
      6. 3.5.6 FlAsH/ReAsH Probes
      7. 3.5.7 Semiconductors, Metal-Based Fluorophores, and Nanodiamonds
      8. 3.5.8 Fluorescent Proteins and Amino Acids
      9. 3.5.9 Snap- and Clip-Tags
      10. 3.5.10 Overcoming Cellular Autofluorescence
    6. 3.6 Basic Fluorescence Microscopy Illumination Modes
      1. 3.6.1 Wide-Field Modes of Epifluorescence and Oblique Epifluorescence
      2. 3.6.2 Total Internal Reflection Fluorescence
      3. 3.6.3 Fluorescence Polarization Microscopy
      4. 3.6.4 Confocal Microscopy
      5. 3.6.5 Environmental Fluorescence Microscopy
      6. 3.6.6 Slimfield and Narrow-Field Epifluorescence Microscopy
    7. 3.7 Summary Points
    8. Questions
    9. References
  12. 4 Making Light Work Harder in Biology: Advanced, Frontier UV–VIS–IR Spectroscopy and Microscopy for Detection and Imaging
    1. 4.1 Introduction
    2. 4.2 Super-Resolution Microscopy
      1. 4.2.1 Abbe Optical Resolution Limit
      2. 4.2.2 Localization Microscopy: The Basics
      3. 4.2.3 Making the Most Out of a Limited Photon Budget
      4. 4.2.4 Advanced Applications of Localization Microscopy
      5. 4.2.5 Limiting Concentrations for Localization Microscopy
      6. 4.2.6 Substoichiometric Labeling and Delimited Photobleaching
      7. 4.2.7 Genetic Engineering Approaches to Increase the Nearest-Neighbor Distance
      8. 4.2.8 Stochastic Activation and Switching of Fluorophores
      9. 4.2.9 Stochastic Blinking
      10. 4.2.10 Reshaping the PSF
      11. 4.2.11 Patterned Illumination Microscopy
      12. 4.2.12 Near-Field Excitation
      13. 4.2.13 Super-Resolution in 3D and 4D
    3. 4.3 Förster Resonance Energy Transfer
      1. 4.3.1 Efficiency of FRET
      2. 4.3.2 Förster Radius and the Kappa-Squared Orientation Factor
      3. 4.3.3 Single-Molecule FRET
    4. 4.4 Fluorescence Correlation Spectroscopy
      1. 4.4.1 Determining the Autocorrelation of Fluorescence Data
      2. 4.4.2 FCS on Mixed Molecule Samples
      3. 4.4.3 FCS on More Complex Samples
    5. 4.5 Light Microscopy of Deep or Thick Samples
      1. 4.5.1 Deconvolution Analysis
      2. 4.5.2 Adaptive Optics for Correcting Optical Inhomogeneity
      3. 4.5.3 Ptychography Methods for Numerical Focusing
      4. 4.5.4 Multiphoton Excitation
      5. 4.5.5 Second-Harmonic Imaging
      6. 4.5.6 Light Sheet Microscopy
      7. 4.5.7 Optical Coherence Tomography
      8. 4.5.8 Removing the Deep Tissue Barrier
    6. 4.6 Advanced Biophysical Techniques Using Elastic Light Scattering
      1. 4.6.1 Static Light Scattering
      2. 4.6.2 Dynamic Light Scattering
      3. 4.6.3 Electrophoretic Light Scattering
      4. 4.6.4 Interferometric Elastic Light Scattering for Molecular Imaging
    7. 4.7 Tools Using the Inelastic Scattering of Light
      1. 4.7.1 Raman Spectroscopy
      2. 4.7.2 Resonance Raman Spectroscopy
      3. 4.7.3 Raman Microscopy
      4. 4.7.4 Coherent Raman Spectroscopy Methods
      5. 4.7.5 Brillouin Light Scattering
    8. 4.8 Summary Points
    9. Questions
    10. References
  13. 5 Detection and Imaging Tools that Use Nonoptical Waves: Radio and Microwaves, Gamma and X-Rays, and Various High-Energy Particle Techniques
    1. 5.1 Introduction
    2. 5.2 Electron Microscopy
      1. 5.2.1 Electron Matter Waves
      2. 5.2.2 Fixing a Sample for Electron Microscopy and Generating Contrast
      3. 5.2.3 Generating Contrast in Electron Microscopy
      4. 5.2.4 Transmission Electron Microscopy
      5. 5.2.5 Scanning Electron Microscopy
      6. 5.2.6 Cryo-EM and CryoET
      7. 5.2.7 Correlative Light and Electron Microscopy
      8. 5.2.8 Electron Diffraction Techniques
    3. 5.3 X-Ray Tools
      1. 5.3.1 X-Ray Generation
      2. 5.3.2 X-Ray Diffraction by Crystals
      3. 5.3.3 X-Ray Diffraction by Noncrystalline Samples
      4. 5.3.4 X-Ray Microscopy Methods
      5. 5.3.5 X-Ray Spectroscopy
      6. 5.3.6 Radiation Damage of Biological Samples by X-Rays and Ways on How to Minimize It
    4. 5.4 NMR and Other Radio Frequency and Microwave Resonance Spectroscopies
      1. 5.4.1 Principles of NMR
      2. 5.4.2 NMR Chemical Shift
      3. 5.4.3 Other NMR Energy Coupling Processes
      4. 5.4.4 Nuclear Relaxation
      5. 5.4.5 NMR in Practice
      6. 5.4.6 NMR Spectroscopy Pulse Sequences
      7. 5.4.7 Multidimensional NMR
      8. 5.4.8 Electron Spin Resonance and Electron Paramagnetic Resonance
      9. 5.4.9 Terahertz Radiation Applications and Spectroscopies
    5. 5.5 Tools that Use Gamma Rays, Radioisotope Decays, and Neutrons
      1. 5.5.1 Mössbauer Spectroscopy
      2. 5.5.2 Radioisotope Decay
      3. 5.5.3 Neutron Diffraction and Small-Angle Scattering
    6. 5.6 Summary Points
    7. Questions
    8. References
  14. 6 Forces: Methods that Measure and/or Manipulate Biological Forces or Use Forces in Their Principal Mode of Operation on Biological Matter
    1. 6.1 Introduction
    2. 6.2 Rheology and Hydrodynamics Tools
      1. 6.2.1 Chromatography Techniques
      2. 6.2.2 Centrifugation Tools
      3. 6.2.3 Tools That Utilize Osmotic Forces
      4. 6.2.4 Deforming Biological Matter with Flow
    3. 6.3 Optical Force Tools
      1. 6.3.1 Basic Principles of Optical Tweezers
      2. 6.3.2 Optical Tweezer Designs in Practice
      3. 6.3.3 Characterizing Displacements and Forces in Optical Tweezers
      4. 6.3.4 Applications of Optical Tweezers
      5. 6.3.5 Non-Gaussian Beam Optical Tweezers
      6. 6.3.6 Controlling Rotation Using “Optical Spanners”
      7. 6.3.7 Combining Optical Tweezers with Other Biophysical Tools
      8. 6.3.8 Optical Microscopy and Scattering Methods to Measure Biological Forces
    4. 6.4 Magnetic Force Methods
      1. 6.4.1 Magnetic Bead–Mediated Purification Methods
      2. 6.4.2 Mass Spectrometry
      3. 6.4.3 Magnetic Tweezers
    5. 6.5 Scanning Probe Microscopy and Force Spectroscopy
      1. 6.5.1 Principles of AFM Imaging
      2. 6.5.2 Forces Experienced During AFM Imaging
      3. 6.5.3 AFM Imaging Modes
      4. 6.5.4 Single-Molecule AFM Force Spectroscopy
      5. 6.5.5 AFM “Cut and Paste”
      6. 6.5.6 AFM and Fluorescence Microscopy
      7. 6.5.7 AFM to Measure Cellular Forces
      8. 6.5.8 Scanning Tunneling Microscopy
      9. 6.5.9 Scanning Ion Conductance Microscopy
      10. 6.5.10 Ultrasonic Force Microscopy
    6. 6.6 Electrical Force Tools
      1. 6.6.1 Gel Electrophoresis
      2. 6.6.2 Electrophysiology
      3. 6.6.3 Solid-State Nanopores
      4. 6.6.4 Synthetic Soft-Matter Nanopores
      5. 6.6.5 Electrorotation
      6. 6.6.6 ABEL Trapping
      7. 6.6.7 Piezoelectric Technologies
      8. 6.6.8 Tethered Particle Motion and Acoustic Trapping
    7. 6.7 Tools to Mechanically Probe Cells and Tissues
      1. 6.7.1 Mechanical Stretch Techniques on Muscle Fibers and Myofibrils
      2. 6.7.2 Mechanical Stress Techniques on Nonmuscle Tissues
    8. 6.8 Summary Points
    9. Questions
    10. References
  15. 7 Complementary Experimental Tools: Valuable Experimental Methods that Complement Mainstream Research Biophysics Techniques
    1. 7.1 Introduction
    2. 7.2 Bioconjugation
      1. 7.2.1 Biotin
      2. 7.2.2 Carboxyl, Amine, and Sulfhydryl Conjugation
      3. 7.2.3 Antibodies
      4. 7.2.4 “Click” Chemistry
      5. 7.2.5 Nucleic Acid Oligo Inserts
      6. 7.2.6 Aptamers
    3. 7.3 Model Organisms
      1. 7.3.1 Model Bacteria and Bacteriophages
      2. 7.3.2 Model Unicellular Eukaryotes or “Simple” Multicellular Eukaryotes
      3. 7.3.3 Model Plants
      4. 7.3.4 Model Animals
    4. 7.4 Molecular Cloning
      1. 7.4.1 Cloning Basics
      2. 7.4.2 Site-Directed Mutagenesis
      3. 7.4.3 Controlling Gene Expression
      4. 7.4.4 DNA-Encoded Reporter Tags
    5. 7.5 Making Crystals
      1. 7.5.1 Biomolecule Purification
      2. 7.5.2 Crystallization
      3. 7.5.3 Treatment After Crystallization
      4. 7.5.4 Photonic Crystals
    6. 7.6 High-Throughput Techniques
      1. 7.6.1 Smart Fabrication Techniques
      2. 7.6.2 Microfluidics
      3. 7.6.3 Optical “Omics” Methods
      4. 7.6.4 “Smart” Sample Manipulation
    7. 7.7 Characterizing Physical Properties of Biological Samples in Bulk
      1. 7.7.1 Calorimetry
      2. 7.7.2 Electrical and Thermal Properties of Tissues
      3. 7.7.3 Bulk Magnetic Properties of Tissues
      4. 7.7.4 Tissue Acoustics
    8. 7.8 Biomedical Physics Tools
      1. 7.8.1 Magnetic Resonance Imaging
      2. 7.8.2 X-Rays and Computer-Assisted (or Computerized) Tomography
      3. 7.8.3 Single-Photon Emission CT and Positron Emission Tomography
      4. 7.8.4 Ultrasound Techniques
      5. 7.8.5 Electrical Signal Detection
      6. 7.8.6 Infrared Imaging and Thermal Ablation
      7. 7.8.7 Internalized Optical Fiber Techniques
      8. 7.8.8 Radiotherapy Methods
      9. 7.8.9 Plasma Physics in Biomedicine
    9. 7.9 Summary Points
    10. Questions
    11. References
  16. 8 Theoretical Biophysics: Computational Biophysical Tools and Methods that Require a Pencil and Paper
    1. 8.1 Introduction
    2. 8.2 Molecular Simulation Methods
      1. 8.2.1 General Principles of MD
      2. 8.2.2 Classical MD Simulations
      3. 8.2.3 Monte Carlo Methods
      4. 8.2.4 Ab Initio MD Simulations
      5. 8.2.5 Steered MD
      6. 8.2.6 Simulating the Effects of Water Molecules and Solvated Ions
      7. 8.2.7 Langevin and Brownian Dynamics
      8. 8.2.8 Coarse-Grained Simulation Tools
      9. 8.2.9 Software and Hardware for MD
      10. 8.2.10 Ising Models
    3. 8.3 Mechanics of Biopolymers
      1. 8.3.1 Discrete Models for Freely Jointed Chains and Freely Rotating Chains
      2. 8.3.2 Continuum Model for the Gaussian Chain
      3. 8.3.3 Wormlike Chains
      4. 8.3.4 Force Dependence of Polymer Extension
      5. 8.3.5 Real Biopolymers
      6. 8.3.6 Modeling Biomolecular Liquid–Liquid Phase Separation
    4. 8.4 Reaction, Diffusion, and Flow
      1. 8.4.1 Markov Models
      2. 8.4.2 Reaction-Limited Regimes
      3. 8.4.3 Diffusion-Limited Regimes
      4. 8.4.4 Fluid Transport in Biology
    5. 8.5 Advanced In Silico Analysis Tools
      1. 8.5.1 Image Processing, Segmentation, and Recognition
      2. 8.5.2 Particle Tracking and Molecular Stoichiometry Tools
      3. 8.5.3 Colocalization Analysis for Determining Molecular Interactions in Images
      4. 8.5.4 Convolution Modeling to Estimate Protein Copy Numbers in Cells
      5. 8.5.5 Bioinformatics Tools
      6. 8.5.6 Step Detection
    6. 8.6 Rigid-Body and Semirigid-Body Biomechanics
      1. 8.6.1 Animal Locomotion
      2. 8.6.2 Plant Biomechanics
      3. 8.6.3 Tissue and Cellular Biomechanics
      4. 8.6.4 Molecular Biomechanics
    7. 8.7 Summary Points
    8. Questions
    9. References
  17. 9 Emerging Biophysics Techniques: An Outlook of the Future Landscape of Biophysics Tools
    1. 9.1 Introduction
    2. 9.2 Systems Biology and Biophysics: “Systems Biophysics”
      1. 9.2.1 Cellular Biophysics
      2. 9.2.2 Molecular Networks
    3. 9.3 Synthetic Biology, Biomimicry, and Bionanotechnology
      1. 9.3.1 Common Principles: Templates, Modularity, Hierarchy, and Self-Assembly
      2. 9.3.2 Synthesizing Biological Circuits
      3. 9.3.3 DNA Origami
      4. 9.3.4 Biofuels, Bioplastics, and a Greener Environment
      5. 9.3.5 Engineering Artificial Peptides, Proteins, and Larger Protein Complexes
      6. 9.3.6 Biomimetic Materials
      7. 9.3.7 Hybrid Bio/Bio–Bio Devices
    4. 9.4 Personalizing Healthcare
      1. 9.4.1 Lab-on-a-Chip and Other New Diagnostic Tools
      2. 9.4.2 Nanomedicine
      3. 9.4.3 Designer Drugs Through In Silico Methods
    5. 9.5 Extending Length and Time Scales to Quantum and Ecological Biophysics
      1. 9.5.1 Quantum Biology
      2. 9.5.2 From Cells to Tissues
      3. 9.5.3 From Organisms to Ecosystems
    6. 9.6 The Impact of AI, ML, and Deep Learning on Biophysics and the Physics of Life
    7. 9.7 Summary Points
    8. Questions
    9. References
  18. Index

Biophysics: Tools and Techniques for the Physics of Life

  1. Cover
  2. Half-Title Page
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. About the Author
  9. 1 Introduction: Toolbox at the Physical–Life Science Interface
  10. Index
  1. i
  2. ii
  3. iii
  4. iv
  5. v
  6. vi
  7. vii
  8. viii
  9. ix
  10. x
  11. xi
  12. xii
  13. xiii
  14. xiv
  15. 1
  16. 2
  17. 3
  18. 4
  19. 5
  20. 6
  21. 7
  22. 8
  23. 9
  24. 10
  25. 11
  26. 12
  27. 13
  28. 14
  29. 15
  30. 16
  31. 17
  32. 18
  33. 19
  34. 20
  35. 21
  36. 22
  37. 23
  38. 24
  39. 25
  40. 26
  41. 27
  42. 28
  43. 29
  44. 30
  45. 31
  46. 32
  47. 33
  48. 34
  49. 35
  50. 36
  51. 37
  52. 38
  53. 39
  54. 40
  55. 41
  56. 42
  57. 43
  58. 44
  59. 45
  60. 46
  61. 47
  62. 48
  63. 49
  64. 50
  65. 51
  66. 52
  67. 53
  68. 54
  69. 55
  70. 56
  71. 57
  72. 58
  73. 59
  74. 60
  75. 61
  76. 62
  77. 63
  78. 64
  79. 65
  80. 66
  81. 67
  82. 68
  83. 69
  84. 70
  85. 71
  86. 72
  87. 73
  88. 74
  89. 75
  90. 76
  91. 77
  92. 78
  93. 79
  94. 80
  95. 81
  96. 82
  97. 83
  98. 84
  99. 85
  100. 86
  101. 87
  102. 88
  103. 89
  104. 90
  105. 91
  106. 92
  107. 93
  108. 94
  109. 95
  110. 96
  111. 97
  112. 98
  113. 99
  114. 100
  115. 101
  116. 102
  117. 103
  118. 104
  119. 105
  120. 106
  121. 107
  122. 108
  123. 109
  124. 110
  125. 111
  126. 112
  127. 113
  128. 114
  129. 115
  130. 116
  131. 117
  132. 118
  133. 119
  134. 120
  135. 121
  136. 122
  137. 123
  138. 124
  139. 125
  140. 126
  141. 127
  142. 128
  143. 129
  144. 130
  145. 131
  146. 132
  147. 133
  148. 134
  149. 135
  150. 136
  151. 137
  152. 138
  153. 139
  154. 140
  155. 141
  156. 142
  157. 143
  158. 144
  159. 145
  160. 146
  161. 147
  162. 148
  163. 149
  164. 150
  165. 151
  166. 152
  167. 153
  168. 154
  169. 155
  170. 156
  171. 157
  172. 158
  173. 159
  174. 160
  175. 161
  176. 162
  177. 163
  178. 164
  179. 165
  180. 166
  181. 167
  182. 168
  183. 169
  184. 170
  185. 171
  186. 172
  187. 173
  188. 174
  189. 175
  190. 176
  191. 177
  192. 178
  193. 179
  194. 180
  195. 181
  196. 182
  197. 183
  198. 184
  199. 185
  200. 186
  201. 187
  202. 188
  203. 189
  204. 190
  205. 191
  206. 192
  207. 193
  208. 194
  209. 195
  210. 196
  211. 197
  212. 198
  213. 199
  214. 200
  215. 201
  216. 202
  217. 203
  218. 204
  219. 205
  220. 206
  221. 207
  222. 208
  223. 209
  224. 210
  225. 211
  226. 212
  227. 213
  228. 214
  229. 215
  230. 216
  231. 217
  232. 218
  233. 219
  234. 220
  235. 221
  236. 222
  237. 223
  238. 224
  239. 225
  240. 226
  241. 227
  242. 228
  243. 229
  244. 230
  245. 231
  246. 232
  247. 233
  248. 234
  249. 235
  250. 236
  251. 237
  252. 238
  253. 239
  254. 240
  255. 241
  256. 242
  257. 243
  258. 244
  259. 245
  260. 246
  261. 247
  262. 248
  263. 249
  264. 250
  265. 251
  266. 252
  267. 253
  268. 254
  269. 255
  270. 256
  271. 257
  272. 258
  273. 259
  274. 260
  275. 261
  276. 262
  277. 263
  278. 264
  279. 265
  280. 266
  281. 267
  282. 268
  283. 269
  284. 270
  285. 271
  286. 272
  287. 273
  288. 274
  289. 275
  290. 276
  291. 277
  292. 278
  293. 279
  294. 280
  295. 281
  296. 282
  297. 283
  298. 284
  299. 285
  300. 286
  301. 287
  302. 288
  303. 289
  304. 290
  305. 291
  306. 292
  307. 293
  308. 294
  309. 295
  310. 296
  311. 297
  312. 298
  313. 299
  314. 300
  315. 301
  316. 302
  317. 303
  318. 304
  319. 305
  320. 306
  321. 307
  322. 308
  323. 309
  324. 310
  325. 311
  326. 312
  327. 313
  328. 315
  329. 316
  330. 317
  331. 318
  332. 319
  333. 320
  334. 321
  335. 322
  336. 323
  337. 324
  338. 325
  339. 326
  340. 327
  341. 328
  342. 329
  343. 330
  344. 331
  345. 332
  346. 333
  347. 334
  348. 335
  349. 336
  350. 337
  351. 338
  352. 339
  353. 340
  354. 341
  355. 342
  356. 343
  357. 344
  358. 345
  359. 346
  360. 347
  361. 348
  362. 349
  363. 350
  364. 351
  365. 352
  366. 353
  367. 354
  368. 355
  369. 356
  370. 357
  371. 358
  372. 359
  373. 360
  374. 361
  375. 362
  376. 363
  377. 364
  378. 365
  379. 366
  380. 367
  381. 368
  382. 369
  383. 370
  384. 371
  385. 372
  386. 373
  387. 374
  388. 375
  389. 376
  390. 377
  391. 378
  392. 379
  393. 380
  394. 381
  395. 382
  396. 383
  397. 384
  398. 385
  399. 386
  400. 387
  401. 388
  402. 389
  403. 390
  404. 391
  405. 392
  406. 393
  407. 394
  408. 395
  409. 396
  410. 397
  411. 398
  412. 399
  413. 400
  414. 401
  415. 402
  416. 403
  417. 404
  418. 405
  419. 406
  420. 407
  421. 408
  422. 409
  423. 410
  424. 411
  425. 412
  426. 413
  427. 414
  428. 415
  429. 416
  430. 417
  431. 418
  432. 419
  433. 420
  434. 421
  435. 422
  436. 423
  437. 424
  438. 425
  439. 426
  440. 427
  441. 428
  442. 429
  443. 430
  444. 431
  445. 432
  446. 433
  447. 434
  448. 435
  449. 436
  450. 437
  451. 438
  452. 439
  453. 440
  454. 441
  455. 442